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Hydrostatic approximation

In the context of the horizontal large-scale ocean and
atmosphere, an important feature is

Aspect ratio =
the depth

the width

' several kilometers

several thousands kilometers
�1.

Small aspect ratio is the main factor to imply

Hydrostatic Approximation



Formal small aspect ratio limit

Consider the anisotropic Navier-Stokes equations{
∂tu + (u · ∇)u − ν1∆Hu − ν2∂

2
zu +∇p = 0,

∇ · u = 0,
in M × (0, ε),

where u = (v ,w), with v = (v1, v2), and M is a domain in R2.
Suppose that ν1 = O(1) and ν2 = O(ε2). Changing of variables:

vε(x , y , z , t) = v(x , y , εz , t),
wε(x , y , z , t) = 1

εw(x , y , εz , t),
pε(x , y , z , t) = p(x , y , εz , t),

for (x , y , z) ∈ M × (0, 1).



Formal small aspect ratio limit (continue)

Then uε and pε satisfy the scaled Navier-Stokes equations

(SNS)


∂tvε + (uε · ∇)vε −∆vε +∇Hpε = 0,
∇H · vε + ∂zwε = 0,
ε2(∂twε + uε · ∇wε −∆wε) + ∂zpε = 0,

in M × (0, 1).

Formally, if (vε,wε, pε)→ (V ,W ,P), then ε→ 0 yields

(PEs)


∂tV + (U · ∇)V −∆V +∇HP = 0,
∇H · V + ∂zW = 0,

∂zP = 0 , (Hydrostatic Approximation),

in M×(0, 1).

where U = (V ,W ).



The above formal limit can be rigorously justified:

weak convergence (L2 initial data, weak solution of SNS ⇀
weak solution of PEs, no convergence rate), Azérad–Guillén
(SIAM J. Math. Anal. 2001)

strong convergence & convergence rate (Hm initial data,
m ≥ 1, strong solution of SNS → strong solution of PEs, with
convergence rate O(ε)), JL–Titi



The primitive equations (PEs)

Equations:

∂tv + (v · ∇H)v + w∂zv − ν1∆Hv − ν2∂
2
z v

+∇Hp + f0k × v = 0,

∂zp + T = 0 , (hydrostatic approximation)

∇H · v + ∂zw = 0,
∂tT + v · ∇HT + w∂zT − µ1∆HT − µ2∂

2
zT = 0.

Unknowns:

velocity (v ,w), with v = (v1, v2), pressure p, temperature T

Constants:

viscosities νi , diffusivity µi , i = 1, 2, Coriolis parameter f0



Remark: some properties of the PEs

The vertical momentum equation reduces to the hydrostatic
approximation;

There is no dynamical information for the vertical velocity,
and it can be recovered only by the incompressiblity condition;

The strongest nonlinear term
w∂zv = −∂−1

z ∇H · v∂zv ≈ (∇v)2.

Remark: on the coefficients

The viscosities ν1 and ν2 may have different values

The diffusivity coefficients µ1 and µ2 may have different values

In case of ν1 = 0, the primitive equations look like the Prandtl
equations (without the term f0k × v)

Due to the strong horizontal turbulent mixing, which
creates the horizontal eddy viscosity, ν1 > 0.



PEs with full dissipation: weak solutions

Global existence:

Lions–Temam–Wang (Nonlinearity 1992A, 1992B, J. Math.
Pures Appl. 1995)

Conditional uniqueness:

z-weak solutions (v0 ∈ X := {f |f , ∂z f ∈ L2}): Bresch et al.
(Differential Integral Equations 2003),

continuous initial data: Kukavica et al. (Nonlinearity 2014),

certain discontinuous initial data (v0 is small L∞ perturbation
of some f ∈ X ): JL–Titi (SIAM J. Math. Anal. 2017)

Remark

Unlike the Navier-Stokes equations, the above uniqueness
conditions for the PEs are imposed on the initial data of the
solutions, rather than on the solutions themselves.
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PEs with full dissipation: strong solutions

Local strong: Guillén-González et al. (Differential Integral
Equations 2001);

Global strong (2D): Bresch–Kazhikhov–Lemoine (SIAM J.
Math. Anal. 2004);

Global strong (3D): Cao–Titi (arXiv 2005/Ann. Math.
2007), Kobelkov (C. R. Math. Acad. Sci. Paris 2006),
Kukavica–Ziane (C. R. Math. Acad. Sci. Paris 2007,
Nonlinearity 2007), Hieber–Kashiwabara (Arch. Rational
Mech. Anal. 2016)

Remark: PEs!NS

One of the key observations of Cao–Titi 2007:

(i) v = v̄ + ṽ , v = 1
2h

∫ h
−h vdz ;

(ii) p appears only in the equations for v̄ (2D), but not
in those for ṽ .

=⇒ L∞t (L6
x) of v (Navier-Stokes equations).
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Primitive equations without any dissipation

The inviscid primitive equations may develop finite-time
singularities

Cao – Ibrahim – Nakanishi – Titi (Comm. Math. Phys. 2015)

Wong (Proc. Amer. Math. Soc. 2015)



Our goals

Question: How about the case in between (PEs with partial
viscosity or diffusivity)? Blow-up in finite time or global existence?

We will focus on the structure of the system itself instead of the
effects caused by the boundary: always suppose the periodic
boundary conditions, and Ω = T2 × (−h, h).
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Theorem (Cao–Titi, Comm. Math. Phys. 2012)

Full Viscosities
&Vertical Diffusivity
(v0,T0) ∈ H4 × H2

Local well-posedness

 =⇒ Global well-posedness

Theorem (Cao–JL–Titi, Arch. Rational Mech. Anal. 2014)

Full Viscosities
&Vertical Diffusivity
(v0,T0) ∈ H2 × H2

 =⇒ Global well-posedness

Theorem (Cao–JL–Titi, J. Differential Equations 2014)

Full Viscosities
&Horizontal Diffusivity

(v0,T0) ∈ H2 × H2

 =⇒ Global well-posedness
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Ideas I (to overcome the strongest nonlinearity)

The hard part of the pressure depends only on two spatial
variables x , y

∂zp + T = 0 ⇒ p = ps(x , y , t)−
∫ z

−h
Tdz ′;

Use anisotropic treatments on different derivatives of the
velocity (∂z >> ∇H):

∂z(w∂zv) = ∂zw∂zv + · · · = − ∇H · v∂zv + · · · ,

∂h(w∂zv) = ∂hw∂zv + · · · = −
∫ z

−h
∂h∇H · vdξ∂zv + · · · ;

The Ladyzhenskaya type inequalities can be applied to∫
M

(∫ h

−h
|f |dz

)(∫ h

−h
|g ||h|dz

)
dxdy .
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Horizontal viscosity + horizontal diffusivity

PEs with horizontal viscosity + horizontal diffusivity :

∂tv + (v · ∇H)v + w∂zv − ν1∆Hv
+∇Hp + f0k × v = 0,

∂zp + T = 0 , (hydrostatic approximation)

∇H · v + ∂zw = 0,
∂tT + v · ∇HT + w∂zT − µ1∆HT = 0.

Theorem (Cao–JL–Titi, Commun. Pure Appl. Math. 2016)

Horizontal Viscosity
&Horizontal Diffusivity

(v0,T0) ∈ H2 × H2

 =⇒ Global well-posedness
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Some improvement of the above result:

Theorem (Cao–JL–Titi, J. Funct. Anal. 2017)

Horizontal Viscosity
&Horizontal Diffusivity

(v0,T0) ∈ H1

 =⇒ Local well-posedness

Horizontal Viscosity
&Horizontal Diffusivity

(v0,T0) ∈ H1∩L∞,
∂zv0 ∈ Lq, for some q ∈ (2,∞)

 =⇒ Global well-posedness

Remark

Local-in-space estimates are used for local well-posedness, as

(i) Nonlinearity of w∂zv = −∂−1
z ∇H · v∂zv is critical.

(ii) Some smallness on initial data is required if using the
global-in-space type energy estimates.
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Main Difficulties

Absence of the dynamical information on w
=⇒ Strongest nonlinear term w∂zv ∼ (∇v)2;

Absence of the vertical viscosity
=⇒ Need to estimate somewhat a priori

∫ T
0 ‖v‖

2
∞dt.



Energy inequality for ω

All high order estimates depend on

L∞(L2) ∩ L2(0,T ;H1) estimates on ω := ∂zv .

Note that ω satisfies

∂tω + (v · ∇H)ω + w∂zω −∆Hω + (ω · ∇H)v − (∇H · v)ω = 0.

Multiplying the above equation by ω, one will encounter∫
(ω · ∇H)v · ω = −

∫
v∇H · (ω ⊗ ω) ≤ 1

2

∫
|∇Hω|2 + C

∫
|v |2|ω|2

=⇒
d

dt
‖ω‖2

2 + ‖∇Hω‖2
2 ≤ C

∫
Ω
|v |2|ω|2dx .
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Absence of vertical viscosity asks for ‖v‖L2
t (L∞x )

If we have full viscosities, then∫
|v |2|ω|2 ≤‖v‖2

4‖ω‖3‖ω‖6 ≤ ‖v‖2
4‖ω‖

1
2
2 ‖ω‖

3
2
6

≤C‖v‖2
4‖ω‖

1
2
2 ‖∇ω‖

3
2
2 ≤

1

2
‖∇ω‖2

2 + C‖v‖8
4‖ω‖2

2.

Since we only have ‖∇Hω‖2
2, we have to∫

|v |2|ω|2 ≤ ‖v‖2
∞‖ω‖2

2.

The absence of the vertical viscosity forces us to do somewhat

a priori
∫ T

0 ‖v‖
2
∞dt estimates !!
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Try some ways

We may try:

Maximal principle: p is nonlocal;

Uniform Lq estimates and let q →∞: p is nonlocal;

Interpolation inequalities (‖v‖∞ ≤ C‖v‖θlow‖v‖
1−θ
high): only

leads to the local-in-time estimate.

Our idea:

Though we are not able to get the uniform Lq estimates on v ,
we may be able to get the precise growth of ‖v‖q w.r.t q;

Such growth information may control the main part of ‖v‖∞,
while the remaining part depends only on the logarithm of the
higher order norms, i.e.

‖v‖∞ ≤ “growth information of ‖v‖q” log ‖v‖high order
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Ideas II (to overcome the absence of vertical viscosity)

Precise Lq estimates of v :

‖v‖q ≤ C
√
q , C is independent of q;

Remark: The above estimates is independent of µ1, µ2.

A logarithmic Sobolev embedding inequality:

‖v‖L∞ ≤ C max

{
1, sup

q≥2

‖v‖Lq√
q

}
log

1
2 (Np(v) + e),

where Np(v) =
∑3

i=1(‖v‖pi + ‖∂iv‖pi ) with 1
p1

+ 1
p2

+ 1
p3
< 1.

A logarithmic Gronwall inequality (and its variations):

d

dt
A + B . A logB =⇒ A(t) +

∫ t

0
B(s)ds <∞.
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Why ∆H is enough?

The pressure satisfies (ignoring the temperature):

1

2h

∫ h

−h
∇H ·

{
∂tv+∇H ·(v⊗v)+∂z(wv)−∆Hv+∇Hp(xH , t) = 0

}
dz

=⇒
−∆Hp(xH , t) =

1

2h

∫ h

−h
∇H · ∇H · (v ⊗ v)dz

Only the horizontal derivatives are involved in the following∫
M

(∫ h

−h
|f |dz

)(∫ h

−h
|gφ|dz

)
dxH

≤C‖f ‖2‖g‖
1
2
2 ‖∇Hg‖

1
2
2 ‖φ‖

1
2
2 ‖∇Hφ‖

1
2
2



Horizontal viscosity + vertical diffusivity

PEs with horizontal viscosity + vertical diffusivity :

∂tv + (v · ∇H)v + w∂zv − ν1∆Hv
+∇Hp + f0k × v = 0,

∂zp + T = 0 , (hydrostatic approximation)

∇H · v + ∂zw = 0,
∂tT + v · ∇HT + w∂zT − µ2∂

2
zT = 0.

Theorem (Cao-JL-Titi)

Horizontal Viscosity
&Vertical Diffusivity

v0 ∈ H2,T0 ∈ H1

∇HT0 ∈ Lq for some q ∈ (2,∞)

⇒ Global well-posedness
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ω := ∂zv , θ := ∇⊥H · v ,

η := ∇H · v +

∫ z

−h
Tdξ − 1

2h

∫ h

−h

∫ z

−h
Tdξdz ,

Remark

We need more smoothness of v0 than that of T0;

The velocity v has the nonstandard regularities:

∇H∂zv ∈ L2
t (H1

x ), (η, θ) ∈ L2
t (H2

x )

6=⇒ ∇Hv ∈ L2
t (H2

x )

However, if in addition that T0 ∈ H2, then v has the standard
regularities:

∇Hv ∈ L2
t (H2

x ) .



Main Difficulties

Absence of the dynamical information on w
=⇒ Strongest nonlinear term w∂zv ∼ (∇v)2;

Absence of the vertical viscosity
=⇒ Need to estimate somewhat a priori

∫ T
0 ‖v‖

2
∞dt;

Absence of the horizontal diffusivity
=⇒ Need to estimate somewhat a priori

∫ T
0 ‖∇Hv‖∞dt:

1

2

d

dt
‖∇HT‖2

2 + ‖∇H∂zT‖2
2

=−
∫

Ω
∇HT · ∇Hv · ∇HT + · · ·

≤
∫

Ω
|∇Hv ||∇HT |2 + · · · ;

Mismatching of regularities between v and T : ∇H

∫ z
−h Tdξ is

involved in the momentum equation, but temperature has
only smoothing effect in vertical direction.



Main Difficulties

Absence of the dynamical information on w
=⇒ Strongest nonlinear term w∂zv ∼ (∇v)2;

Absence of the vertical viscosity
=⇒ Need to estimate somewhat a priori

∫ T
0 ‖v‖

2
∞dt;

Absence of the horizontal diffusivity
=⇒ Need to estimate somewhat a priori

∫ T
0 ‖∇Hv‖∞dt:

1

2

d

dt
‖∇HT‖2

2 + ‖∇H∂zT‖2
2

=−
∫

Ω
∇HT · ∇Hv · ∇HT + · · ·

≤
∫

Ω
|∇Hv ||∇HT |2 + · · · ;

Mismatching of regularities between v and T : ∇H

∫ z
−h Tdξ is

involved in the momentum equation, but temperature has
only smoothing effect in vertical direction.



Ideas III (to overcome mismatching of the regularities)

To overcome the difficulties caused by the mismatching of the
regularities between v and T , we introduce:

η := ∇H · v +
∫ z
−h Tdξ −

1
2h

∫ h
−h
∫ z
−h Tdξdz , θ := ∇⊥H · v ,

when working on ‖v‖L∞t (H1
x ), and

ϕ := ∇H · ∂zv + T , ψ := ∇⊥H · ∂zv ,

when working on ‖v‖L∞t (H2
x ).



Equations for (η, θ)

Then, (η, θ) satisfies

∂tθ −∆Hθ = −∇⊥H · [(v · ∇H)v + w∂zv + f0k × v ],∫ h

−h
ηdz = 0,

∂tη −∆Hη = −∇H · [(v · ∇H)v + w∂zv + f0k × v ]− wT

+∂zT −
∫ z

−h
∇H · (vT )dξ +H(x , y ,t),

where

H(x , y ,t) = 1
2h

∫ h
−h∇H ·

(
∇H · (v ⊗ v) + f0k × v

)
dz

+ 1
2h

∫ h
−h

(∫ z
−h∇H · (vT )dξ + wT

)
dz .



Advantages of η and θ

Some advantages of η and θ:

η and θ have more regularities than ∇Hv (η and θ have
standard regularities, but ∇Hv does not);

Only ∇T , instead of ∇2
HT (which appears in the equations

for ∇Hv), is involved in the equations of η and θ;

For the aim of getting L∞t (L2
x) estimates on η and θ, one does

not need appeal to ∇T .

⇓

One can achieve ‖v‖L∞t (H1
x ) by performing the ‖(ω, η, θ)‖L∞t (L2

x)

(precise Lq estimates, logarithmic Sobolev, logarithmic Gronwall).

Remark

The ‖v‖L∞t (H1
x ) estimate is uniform in the vertical diffusivity µ2.



Ideas IV (to overcome absence of horizontal diffusivity)

The absence of horizontal diffusivity requires somewhat

a priori

∫ T
0
‖∇Hv‖∞dt,

We decompose v as

v =“temperature-independent part”(! ‖(η, θ)‖L2
t (H1

x ))

+ “temperature-dependent part”(boundedness of T )

=ζ +$,

where {
∇H ·$ = 1

|M|
∫
M Φdxdy − Φ, in Ω,

∇⊥H ·$ = 0, in Ω,
∫
M $dxdy = 0,

where Φ =
∫ z
−h Tdξ −

1
2h

∫ h
−h
∫ z
−h Tdξdz .



Estimates on $ and ζ

For the temperature-dependent part $: recalling that

∇H ·$ =
1

|M|

∫
M

Φdxdy − Φ, ∇⊥H ·$ = 0

and using the Beale-Kato-Majda type logarithmic Sobolev
embedding =⇒

sup
−h≤z≤h

‖∇H$‖∞,M ≤ C log(e + ‖∇HT‖q).

For the temperature-independent part ζ: Noticing that

∇H · ζ = η − 1
|M|
∫
M Φdxdy , ∇⊥H · ζ = θ

and using the Brézis-Gallouet-Wainger type logarithmic
Sobolev embedding inequality =⇒∫ h

−h
‖∇Hζ‖∞,Mdz ≤ C‖∇H(η, θ)‖2 log1/2(e + ‖∆H(η, θ)‖2).



Summary and ongoing works
More related results can be found in a recent survey paper:

JL–Titi: Recent Advances Concerning Certain Class of
Geophysical Flows, (in
“Handbook of Mathematical Analysis in Viscous Fluid”)
arXiv:1604.01695

Summary:

The PEs with only horizontal viscosity admit a unique
global strong solution, as long as we still have either
horizontal or vertical diffusivity;

Strong horizontal turbulent mixing, which creates the
horizontal eddy viscosity, is crucial for stabilizing the
oceanic and atmospheric dynamics.

Ongoing works:

PEs with full or partial viscosity but without any diffusivity
(need more ideas).

PEs (with full or partial dissipation) with moisture (different
phases).
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Thank You!

Jinkai Li Global well-posedness of the primitive equations
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