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Hydrostatic approximation

In the context of the horizontal large-scale ocean and
atmosphere, an important feature is

the depth

the width
several kilometers

Aspect ratio =

~

several thousands kilometers
<1.

Small aspect ratio is the main factor to imply

Hydrostatic Approximation




Formal small aspect ratio limit

Consider the anisotropic Navier-Stokes equations

. —_— - 2 =
{atu+(u VIu=mBuu = 12dut VP =0 s (0,0),

V.-u=0,
where u = (v, w), with v = (v}, v?), and M is a domain in R?.
Suppose that v; = O(1) and v» = O(¢?). Changing of variables:

VE(X7 y’ z’ t) = V(X? y7 527 t)?
wo(x,y,z,t) = Lw(x,y,ez,t),
pE(X7y’ Z’ t) = p(X7y?€Z7 t)’

for (x,y,z) € M x (0,1).



Formal small aspect ratio limit (continue)

Then u. and p. satisfy the scaled Navier-Stokes equations

Orve + (uz - V)ve — Ave + Vipe =0,
(SNS) < V- ve+0,w. =0, in M x (0,1).
2(0pwe + U - Vw, — Aw.) + 9,p- = 0,

Formally, if (v, we, p:) — (V, W, P), then ¢ — 0 yields

OV +(U-V)V—-AV+VyuP =0,
(PEs){ Vu: -V +0,W =0, in Mx(0,1).

, (Hydrostatic Approximation),

where U = (V, W).



The above formal limit can be rigorously justified:

@ weak convergence (L2 initial data, weak solution of SNS —
weak solution of PEs, no convergence rate), Azérad—Guillén
(SIAM J. Math. Anal. 2001)

@ strong convergence & convergence rate (H™ initial data,
m > 1, strong solution of SNS — strong solution of PEs, with
convergence rate O(¢g)), JL-Titi



The primitive equations (PEs)

Equations:

v+ (V- Vi)V + wd,v — v1Apv — 1202y
+ VHp + fok x v =0,
, (hydrostatic approximation)
Vyu-v+0,w=0,
0T +v-VuT + WBZT—,U,lAHT—,uzagT =0.

Unknowns:
e velocity (v, w), with v = (v!, v?), pressure p, temperature T
Constants:

@ viscosities v;, diffusivity u;, i = 1,2, Coriolis parameter f



Remark: some properties of the PEs

@ The vertical momentum equation reduces to the hydrostatic
approximation;

@ There is no dynamical information for the vertical velocity,
and it can be recovered only by the incompressiblity condition;
@ The strongest nonlinear term
wd,v = —0;1Vy - vO,v = (Vv)2.

v

Remark: on the coefficients

@ The viscosities 1 and v, may have different values

@ The diffusivity coefficients p11 and pp may have different values

@ In case of 1 = 0, the primitive equations look like the Prandtl
equations (without the term fok X v)

@ Due to the strong horizontal turbulent mixing, which
creates the horizontal eddy viscosity, 11 > 0.

A\




PEs with full dissipation: weak solutions

Global existence:

o Lions—Temam-Wang (Nonlinearity 1992A, 1992B, J. Math.
Pures Appl. 1995)



PEs with full dissipation: weak solutions

Global existence:

o Lions—Temam-Wang (Nonlinearity 1992A, 1992B, J. Math.
Pures Appl. 1995)

Conditional uniqueness:

e z-weak solutions (vo € X := {f|f,0,f € L?}): Bresch et al.
(Differential Integral Equations 2003),

e continuous initial data: Kukavica et al. (Nonlinearity 2014),

@ certain discontinuous initial data (vp is small L® perturbation
of some f € X): JL-Titi (SIAM J. Math. Anal. 2017)



PEs with full dissipation: weak solutions

Global existence:

o Lions—Temam-Wang (Nonlinearity 1992A, 1992B, J. Math.
Pures Appl. 1995)

Conditional uniqueness:

e z-weak solutions (vo € X := {f|f,0,f € L?}): Bresch et al.
(Differential Integral Equations 2003),

e continuous initial data: Kukavica et al. (Nonlinearity 2014),

@ certain discontinuous initial data (vp is small L® perturbation
of some f € X): JL-Titi (SIAM J. Math. Anal. 2017)

Unlike the Navier-Stokes equations, the above uniqueness
conditions for the PEs are imposed on the initial data of the
solutions, rather than on the solutions themselves.




PEs with full dissipation: strong solutions

@ Local strong: Guillén-Gonzélez et al. (Differential Integral
Equations 2001);

@ Global strong (2D): Bresch—Kazhikhov—Lemoine (SIAM J.
Math. Anal. 2004);



PEs with full dissipation: strong solutions

@ Local strong: Guillén-Gonzélez et al. (Differential Integral
Equations 2001);

@ Global strong (2D): Bresch—Kazhikhov—Lemoine (SIAM J.
Math. Anal. 2004);

e Global strong (3D): Cao-Titi (arXiv 2005/Ann. Math.
2007), Kobelkov (C. R. Math. Acad. Sci. Paris 2006),
Kukavica—Ziane (C. R. Math. Acad. Sci. Paris 2007,
Nonlinearity 2007), Hieber—Kashiwabara (Arch. Rational
Mech. Anal. 2016)

Remark: PEs«~NS

One of the key observations of Cao—Titi 2007:
: _ h
() v=v+0,v=35 [ vdz;
(i) p appears only in the equations for v (2D), but not
in those for V.

— | [2°(L9) of v | (NavierStokes-equations).




Primitive equations without any dissipation

The inviscid primitive equations may develop finite-time
singularities

@ Cao — Ibrahim — Nakanishi — Titi (Comm. Math. Phys. 2015)

e Wong (Proc. Amer. Math. Soc. 2015)



Question: How about the case in between (PEs with partial
viscosity or diffusivity)? Blow-up in finite time or global existence?

We will focus on the structure of the system itself instead of the
effects caused by the boundary: always suppose the periodic
boundary conditions, and Q = T? x (—h, h).
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Theorem (Cao—Titi, Comm. Math. Phys. 2012)

Full Viscosities
&Vertical Diffusivity
(VQ, To) € H* x H?
Local well-posedness

= Global well-posedness
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Theorem (Cao—Titi, Comm. Math. Phys. 2012)

Full Viscosities
&Vertical Diffusivity
(V(), To) € H* x H?
Local well-posedness

— Global well-posedness

Theorem (Cao—JL-Titi, Arch.

Full Viscosities
&Vertical Diffusivity
(Vo, To) € H? x H?

Rational Mech. Anal. 2014)

—> Global well-posedness

Theorem (Cao—JL-Titi, J. Differential Equations 2014)

Full Viscosities
&Horizontal Diffusivity
(Vo, To) € H?> x H?

— Global well-posedness




Ideas | (to overcome the strongest nonlinearity)

@ The hard part of the pressure depends only on two spatial
variables x, y

8ZP+T:0 = p:ps(xvyvt)_/ szl;
—h

@ Use anisotropic treatments on different derivatives of the
velocity (0, >> Vp):

0,(wO,v) = O,wi,v + -+ = —_|_... ’

ah(wc’)zv)zahwazv+---=/ OV - vdED v |+ -+ ;
—h

@ The Ladyzhenskaya type inequalities can be applied to

L ([ m0e) ([ il ) ey



Horizontal viscosity case
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Horizontal viscosity + horizontal diffusivity

PEs with | horizontal viscosity + horizontal diffusivity |

Orv+ (v Vy)v + wov — 1 Ayv
£ Vup+ fok x v =0,

Ozp+ T =0]| (hydrostatic approximation)

VH-v+0,w=0,
0T +v -VuT +wo, T —1AyT =0.



Horizontal viscosity + horizontal diffusivity

PEs with | horizontal viscosity + horizontal diffusivity |

Orv+ (v Vy)v + wov — 1 Ayv
£ Vyp+fok X v =0,

Ozp+ T =0]| (hydrostatic approximation)

VH-v+0,w=0,
0T +v -VuT +wo, T —1AyT =0.

Theorem (Cao—JL-Titi, Commun. Pure Appl. Math. 2016)

Horizontal Viscosity
&Horizontal Diffusivity » = Global well-posedness
(Vo, To) € H? x H?




Some improvement of the above result:

Theorem (Cao—JL-Titi, J. Funct. Anal. 2017)

Horizontal Viscosity
&Horizontal Diffusivity » — Local well-posedness
(VQ7 To) € H!




Some improvement of the above result:

Theorem (Cao—JL-Titi, J. Funct. Anal. 2017)

Horizontal Viscosity
&Horizontal Diffusivity » = Local well-posedness
(V()7 To) € H!

Horizontal Viscosity
&Horizontal Diffusivity

(vo, To) € HlﬁLoo,

02vp € L9, for some g € (2, 00)

—> Global well-posedness

Remark

| A

Local-in-space estimates are used for local well-posedness, as
(i) Nonlinearity of wd,v = —0;1Vy - v,V is critical.

(i) Some smallness on initial data is required if using the
global-in-space type energy estimates.

v




Main Difficulties

@ Absence of the dynamical information on w
— Strongest nonlinear term wd,v ~ (Vv)?;

@ Absence of the vertical viscosity
—> Need to estimate somewhat a priori fOT |v||% dt.



Energy inequality for w

All high order estimates depend on

L>°(L2) N L?(0, T; H') estimates on w := d,v.




Energy inequality for w

All high order estimates depend on

L>°(L2) N L?(0, T; H') estimates on w := d,v.

Note that w satisfies
Ow+ (v-Vy)w + wo,w — Apgw + (w- Vy)v — (Vg - v)w =0.

Multiplying the above equation by w, one will encounter

/(w-VH)v-w:—/vVH wQw) /]VHw|2+C/|v| |w|?
—

d
11+ 19mwlB < € [ vl
t Ja



Absence of vertical viscosity asks for [|v|];2(;c

If we have full viscosities, then

1 3
o 13
/Ivzlfﬂ\2 <|vlllwlisliwlls < lvIZlwl3llwllg

1 31
<Clvl3llwli3 Vw3 < §\|Vw|\§ + ClvIFlwl3.



Absence of vertical viscosity asks for [|v|];2(;c

If we have full viscosities, then
20 12 2 20 313
/IV |wl* <[Ivizllwllsllwlle < lviiallwl3 lwllé
200113 3 _1 2 81, 112
<C|vllallwll3 Vw3 < §HVWH2 + Cllvllzljw]l2.
Since we only have |V yw||3, we have to
21 12 2 2
[ IV < VI

The absence of the vertical viscosity forces us to do somewhat

a priori fOT |v||% dt estimates !!




We may try:
o Maximal-prineiple: p is nonlocal;
o Uniform-L9 estimatesand-let-g—oc: p is nonlocal;
o Interpelation-inequalities (||v(|oo < CI|V[I{,,[Ivlign): only

leads to the local-in-time estimate.



We may try:
o Maximal-prineiple: p is nonlocal;
o Uniform-L9 estimatesand-let-g—oc: p is nonlocal;
o Interpelation-inequalities (||v(|oo < CI|V[I{,,[Ivlign): only

leads to the local-in-time estimate.
Our idea:
@ Though we are not able to get the uniform L9 estimates on v,
we may be able to get the precise growth of ||v||, w.r.t g;

@ Such growth information may control the main part of ||v||s,

while the remaining part depends only on the logarithm of the
higher order norms, i.e.

|v]|se < “growth information of ||v||4" log ||v||high order




Ideas Il (to overcome the absence of vertical viscosity)

@ Precise L9 estimates of v:

Ivllg < Cy/q|, Cis independent of g;

Remark: The above estimates is independent of w1, po.
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Remark: The above estimates is independent of w1, po.

@ A logarithmic Sobolev embedding inequality:
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Ideas Il (to overcome the absence of vertical viscosity)

@ Precise L9 estimates of v:

Ivllg < Cy/q|, Cis independent of g;

Remark: The above estimates is independent of w1, po.

@ A logarithmic Sobolev embedding inequality:

a>2 /4

where Np(v) = 3221 (Il + [10ivlp) with 2+ 2 + 2 < 1.
@ A logarithmic Gronwall inequality (and its varlatlons).

V][ < Cmax{l sup — — Ivilee } |0g%(Np(v) +e),

t
%A+B§Alog8 = A(t)+/ B(s)ds < oo.
0



Why Ay is enough?

@ The pressure satisfies (ignoring the temperature):

1 h
| Vu {Otv—|—VH-(v®v)+82(Wv)—AHv—I—VHp(XH, t) = o}dz
—h

=

1 h
—App(xT t) = 2h/ Vi -Vu-(v®v)dz
—h

@ Only the horizontal derivatives are involved in the following

L[z ([ tgotae) o

1 11 1
<Clfll2llgli3IVuell3 1ol 1V Hell3



Horizontal viscosity + vertical diffusivity

PEs with ‘ horizontal viscosity + vertical diffusivity ‘:

Orv+ (v Vy)v + wov — 1 Apyv
4+ Vup+ fok x v =20,
, (hydrostatic approximation)
Vy-v+0,w=0,
T +v-VuT +wd, T — 120°T = 0.



Horizontal viscosity + vertical diffusivity

PEs with ‘ horizontal viscosity + vertical diffusivity ‘:

8tV+ (V : VH)V-i- Wf)zv — VlAHV
4+ Vup+ fok x v =20,

Op+ T =0]| (hydrostatic approximation)

Vy-v+0,w=0,
8tT+v-VHT+W82T—u28§T:0.

Theorem (Cao-JL-Titi)

Horizontal Viscosity

&Vertical Diffusivity

Vo € H27 Ty € H1

Vi Ty € L9 for some g € (2, 0)

= Global well-posedness




w:i=0,v, 0:=V§

n::VH-v—i-/ Tdf—/ / Td&dz |,

Remark

@ We need more smoothness of vy than that of Ty;

@ The velocity v has the nonstandard regularities:

Vyo,v e L%(H)})a (7770) € L%(H)%)
#= Vv € L3 (H)

@ However, if in addition that Ty € H?, then v has the standard
regularities:

Vv € L2(H?)|.




Main Difficulties

@ Absence of the dynamical information on w
— Strongest nonlinear term wd,v ~ (Vv)?;

@ Absence of the vertical viscosity
—> Need to estimate somewhat a priori jg |v||% dt;



Main Difficulties

@ Absence of the dynamical information on w
— Strongest nonlinear term wd,v ~ (Vv)?;

@ Absence of the vertical viscosity
—> Need to estimate somewhat a priori jg |v||% dt;

@ Absence of the horizontal diffusivity
— Need to estimate somewhat a priori fOT |Viv|eodt:

1d
a9 T2 T2
2dtIIVH 15+ IVHO T3
:/VHT'VHV~VHT+--~
Q
g/vavWHT2+---;
JQ

@ Mismatching of regularities between v and T: Vg [fh Td¢ is
involved in the momentum equation, but temperature has
only smoothing effect in vertical direction.



Ideas Il (to overcome mismatching of the regularities)

To overcome the difficulties caused by the mismatching of the
regularities between v and T, we introduce:

n=Vy-v+ [7, Tde— L [" [% Tdedz, §:= Vv,
when working on |[v|| s (41, and
=V -0,v+ T, w::Vﬁ-(‘)zv,

when working on |[v|| o (t2)-



Equations for (7, 0)

Then, (1, 0) satisfies

00— Ayl = —Vi-[(v- Vi)V + wd,v + fok x V],
h
/ ndz = 0,
—h
om—Apyn = —=Vy-[(v-VH)v+wdv+ fok x v] —wT

+azT—/ Vi - (vT)dE + H(x, y.t),
—h

where
+% ffh (ffh V- (vT)dE + WT) dz.



Advantages of n and 6

Some advantages of 1 and 6:

@ 7 and 0 have more regularities than Vv (1 and 6 have
standard regularities, but Vv does not);

@ Only VT, instead of Vi,T (which appears in the equations
for Vyv), is involved in the equations of 7 and 6;

o For the aim of getting L3°(L2) estimates on 7 and 6, one does
not need appeal to VT.

4

One can achieve [|v||oo(p1) by performing the [|(w, 7, 0)| 1o (12)
(precise L9 estimates, logarithmic Sobolev, logarithmic Gronwall).

The [|v|[ oo(t1) estimate is uniform in the vertical diffusivity yo.




Ideas IV (to overcome absence of horizontal diffusivity)

The absence of horizontal diffusivity requires somewhat

;
; priori/ IV ivsodt,
JO

We decompose v as

v ="temperature-independent part” (e~ [|(n, 0)[| 2(11))
+ “temperature-dependent part” (boundedness of T)
=+,
where ) _
Vy w= WfMCDdxdy—CD, in Q,
Vi -w=0, inQ, Sy wdxdy =0,

where & = [?, Td¢ — L [ % Td¢dz.



Estimates on @ and ¢

@ For the temperature-dependent part w: recalling that
1 L
Vhw=1— [ ®dxdy —®, Vi -w=0
(M Jm

and using the Beale-Kato-Majda type logarithmic Sobolev
embedding —

sup [|[VH@|loo,m < Clog(e + [[VHT|q)-
—h<z<h

@ For the temperature-independent part (: Noticing that
Vi C=n— g Ju®ddy, Vi-¢=0

and using the Brézis-Gallouet-Wainger type logarithmic
Sobolev embedding inequality =

h
/ 19z < CIVi(r.0)]2log" (e + [An(n.6)2)



Summary and ongoing works

More related results can be found in a recent survey paper:
@ JL-Titi: Recent Advances Concerning Certain Class of
Geophysical Flows, (in
“Handbook of Mathematical Analysis in Viscous Fluid")
arXiv:1604.01695

Summary:

@ The PEs with only horizontal viscosity admit a unique
global strong solution, as long as we still have either
horizontal or vertical diffusivity;

@ Strong horizontal turbulent mixing, which creates the
horizontal eddy viscosity, is crucial for stabilizing the
oceanic and atmospheric dynamics.

Ongoing works:

@ PEs with full or partial viscosity but without any diffusivity

(need more ideas).

@ PEs (with full or partial dissipation) with moisture (different
phases).



Horizontal viscosity case

Thank You!
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